* Goal Compute $\Pi_{\star}^{C_{2}} K R$ as Mackey functor.
$K R=$ Atijah $K R$ theory. is a geniune C_{2}-spectrum. note that $\mathbb{I}_{V}^{C_{2}} K R(X)=\left[S^{\vee} \wedge X_{+}, K R\right]^{C_{2}}$ for $X C_{2}$-space.

Tool Slice SS (equivariant Postnikov tower)

$$
\underline{E}_{2}^{s . t}=\frac{\underline{I}_{t-s}^{C_{2}}}{I_{t}} K R \Rightarrow \underline{I}_{t-s}^{C_{2}} K R
$$

EACT 1 By Bott periodicity, $\quad K R^{p \cdot q}(X) \cong K R^{p+2 \cdot q+1}\left(S^{2.1} \wedge X\right)$
So $\forall V \in R(G) . \quad V=a+b \sigma . \quad \rho=$ regular rep $=1+\sigma$

$$
\begin{aligned}
\mathbb{I}_{V}^{C_{2}} K R & =\Pi_{a+b \sigma}^{C_{2}} K R=\Pi_{a-b+b+b \sigma}^{C_{2}} K R \\
& =\Pi_{a-b+b p}^{c_{2}} K R \\
& =\Pi_{a-b}^{c_{2}} K R . \quad a-b \in \mathbb{Z} .
\end{aligned}
$$

That is. $\quad \Pi_{\pi}^{C_{2}} K R$ is determined by $\quad \mathbb{I}_{*}^{C_{2}} K R . \quad *=\mathbb{N}$-index. No need to consider ROCS)-grading.

FACT 2 Recall that $\operatorname{KR}\left(C_{2} x x\right)=K U(x)$
$K R(x)=K O(x)$ if C_{2} acts trivially, i.e. $x^{c_{2}}=x$.

Thus $\quad \pi_{*}^{C_{2}} K R\left(C_{2} / C_{2}\right)=\pi_{*} K O$

$$
\underline{\Pi}_{*}^{C_{2}} K R\left(C_{2} / e\right)=\pi_{*} K U
$$

EACT3 Homotopy fixed point theorem

$$
K R^{C_{2}}=K R^{h C_{2}}
$$

${ }^{(*)}$ In fact. if X is equivariant $h t p y$ ring spectrum and $\tilde{E G} \cap X$ is contractible. $X \rightarrow X^{E G_{t}}$ is then a weak equiv. and so

$$
x^{a} \rightarrow\left(x^{E a_{a}+a}\right)^{a}=x^{h a} \text { equiv. }
$$

- We check that $\tilde{E C}_{2} \cap K R \simeq *$.

In the isotropy separation sequence

$$
E F_{+} \rightarrow s^{\circ} \rightarrow \widetilde{E F}
$$

A point-set model for EF is $S(\infty \rho)$. $p=$ reg. rep. of C_{2}.
ie. $E F=S(\infty p)=U_{n \geq 1} S(n p)$ union of unit sphere in $n p$.

$$
\begin{aligned}
& \widetilde{E F}=S^{\infty p}=\text { colum } S^{n p} \\
& =\operatorname{colim}\left(S^{0} \xrightarrow{a_{e}} S^{\rho} \xrightarrow{a_{p}} S^{2 \rho} \xrightarrow{a_{p}} \ldots\right) \\
& =S^{0}\left[a_{p}^{-1}\right] \\
& \Rightarrow \quad K R \wedge s^{\circ} \xrightarrow{1 \wedge a r_{r}} K R \cap S^{\rho} \\
& \uparrow \beta \\
& K R \wedge S^{-1}
\end{aligned}
$$

where $\eta: S^{\prime} \rightarrow S^{0}$ Hoff map
$\beta: S^{p} \rightarrow K R$ Bore elect. invertible.
$\eta^{4}=0 \quad \Rightarrow$ colin inverts a nilpotence et η.

- We prove (*) :

Consider the Tace diagram

If $\tilde{E G} \cap X$ contractible $\Rightarrow \Phi^{G} X \simeq * . X^{t a}$ is a module over $* \Rightarrow x^{t h} \simeq *$. So $x^{a} \simeq x^{h a}$.

FACT 4 Homotopy fixed point spectral sequence (HFPSS).
Recall that HFPSS is

$$
E_{2}^{s, t}=H^{s}\left(G ; \pi_{t} X\right) \Rightarrow \pi_{\tau-s}\left(X^{h G}\right) .
$$

This can be obtained by skeleton filtration of \widetilde{E}.
Let $G=C_{2} . \quad X=K R$. π_{*} replaced by $\pi_{*}^{C_{2}}$. So ne get

$$
\begin{aligned}
E_{2}^{s_{t}}=H^{s}\left(C_{2}: \underline{\Pi}_{t}^{C_{2}} K R\right) \Rightarrow & \underline{\Pi}_{t \cdot s}^{C_{2}}\left(K R^{h C_{2}}\right) \\
& =\underline{\Pi}_{t \cdot s}^{C_{2}}\left(K R^{C_{2}}\right)
\end{aligned}
$$

- Evaluate at $C_{2} / e . \quad \Pi_{t}^{C_{2}} K R\left(C_{2} / e\right)=\pi_{t} K U$

$$
\Pi_{t-S}^{C_{2}}\left(K R^{C_{2}}\right)\left(C_{1 / e}\right)=\pi_{t-S} K O
$$

Let $\beta=H-1 \in K\left(S^{2}\right)$ be the Bott elect. This β is the underlying map of $S^{p} \rightarrow K R$. Note that $\pm 1 \in C_{2}$ acts on $K U$ by Adieus operation. i.e.

$$
\begin{array}{rlr}
S^{2 n, n} & \xrightarrow{\beta^{n}} & \mathbb{Z} \times B U \\
(-1)^{n} \downarrow & & \downarrow \psi^{-1} \\
S^{2 n, n} & \xrightarrow{\beta^{n}} & \mathbb{Z} \times B U
\end{array}
$$

This is $b / c \quad K\left(S^{2 n, n}\right) \xrightarrow{\psi^{-1}} K\left(S^{2 n, n}\right), \beta^{n} \in K\left(S^{2 n, n}\right)$ as
$a \longmapsto(-1)^{n} \cdot a \quad$ a gen.
Therefore. $\quad \pi_{2 t} K U=\mathbb{Z}\left\{\beta^{t}\right\}$. w/ C_{2} acts by ψ^{-1}. where $\psi^{-1} \beta^{t}=(-1)^{t} \beta^{t}$. In other word. we get

$$
\pi_{2 t} K U=\left\{\begin{array}{ll}
\mathbb{K}, & t \text { even }
\end{array} \rightarrow\right. \text { trivial action }
$$

So $H^{S}\left(C_{2}: \pi_{2 t} K U\right) \Rightarrow \pi_{2 t-5} K O$. need to compute
(1)

$$
\begin{aligned}
H^{S}\left(C_{2}: \mathbb{Z}\right) & =H^{S}\left(B C_{2}: \mathbb{Z}\right) \\
& =H^{S}\left(\mathbb{R} P^{\infty}: \mathbb{Z}\right) \\
& = \begin{cases}\mathbb{Z} \cdot & s=0 \\
\mathbb{Z} / 2, & s>0 \text { even } \\
0 . \text { else }\end{cases}
\end{aligned}
$$

(2) T_{0} comprise $H^{s}\left(C_{2}: \mathbb{Z}_{-}\right)$. note $\mathbb{Z}_{-}=\mathbb{Z} 2 C_{2}$.
one needs to find the free resolution $P_{0} \rightarrow \mathbb{Z}$ as a trivial $\mathbb{Z}\left[C_{2}\right]$-module: $\left(\mathbb{Z}\left[C_{2}\right] \cong \mathbb{Z}[x] / x^{2}-1\right)$

$$
\cdots \mathbb{Z}\left[C_{1}\right] \xrightarrow{(x-1)} \mathbb{Z}\left[C_{2}\right] \xrightarrow{(x+1)} \mathbb{Z}\left[C_{2}\right] \xrightarrow{(x-1)} \mathbb{Z}\left[C_{2}\right] \xrightarrow{x \rightarrow 1} \mathbb{Z} \rightarrow 0
$$

apply $H^{\mathrm{Hom}_{\mathbb{Z}}\left[C_{2}\right]}\left(-, \mathbb{Z}_{-}\right)$to get

Here we note that $\left(\operatorname{Hom}_{\mathbb{Z}\left[C_{2}\right]}(-, \mathbb{Z})\right)(x-1)=\left.(-x-1)\right|_{x=1}$

$$
\begin{aligned}
& =-2 \\
\left(\operatorname{Hom}_{\mathbb{Z} L C u l}\left(-. \mathbb{Z}_{-}\right)\right)(x+1) & =\left.(-x+1)\right|_{x=1} \\
& =0
\end{aligned}
$$

$$
\Rightarrow \quad H^{s}\left(C_{2}: \mathbb{Z}_{-}\right)= \begin{cases}\pi / 2 . & s>0 . \text { odd } . \\ \quad t \text { odd } & \text { else. }\end{cases}
$$

Combine (1)(2). get

$$
E_{2}^{s_{2} 2 t}=H^{s}\left(C_{2}: \pi_{2 t} K U\right)= \begin{cases}\mathbb{K}, & s=0, t \text { even } \\ \pi / 2, & t-s \text { even, } s>0 \\ 0, & \text { else }\end{cases}
$$

E_{2}-page: $\quad=\mathbb{Z} \quad=\mathbb{Z} / 2$ in usual gradin (s.t)

Clearly no
d_{2}-differentials First non-trivial diff should be dy.
E_{2}-page in Adams grading ($t-s . s$): $\quad=\mathbb{Z} \quad 0=\mathbb{Z} / 2$

Since $\pi_{t-s} K O= \begin{cases}\mathbb{K}, & t-s \equiv 0.4 . \\ \mathbb{4}, ~ \bmod 8 \\ 0 . & t-s \equiv 1.2, \\ \bmod 8\end{cases}$
it follows that some dy reeds to vanish. Actually we have

Actually one has $\pi_{*} K O=\mathbb{Z}\left[\beta^{ \pm}, \eta, \omega\right] /\left(2 \eta \cdot \eta^{3} \cdot \omega^{2}=46\right)$ where $y=H$ lop map $S^{\prime} \rightarrow s^{\circ}$

FACT 5 Slice spectral sequence.

$$
\underline{E}_{2}^{s . t}=\underline{\Pi}_{t-s}^{C_{2}} P_{t} K R \Rightarrow \Pi_{t-s}^{C_{2}} K R
$$

Evaluate at C_{2} / H. get

$$
\pi_{t-s}^{C_{2}} P_{t} K R\left(C_{2} / H\right) \Rightarrow \Pi_{t-s}^{C_{2}} K R\left(C_{1} / H\right)=\left\{\begin{array}{l}
\pi_{t-s} K O, H=C_{2} \\
\pi_{t-s} K U, H=e
\end{array}\right.
$$

Need to know the slices. Recall that in Digger's paper. these is an equivariont Postuikov tower:

where $\mathrm{Kr}=$ connective cover of $K R$. $\beta=$ Bore elect, colin $=K R$.

$$
\begin{aligned}
& \text { lib }=* \text {. So } P_{t} K R=\left\{\begin{array}{l}
\sum^{t \cdot \frac{t}{2}} H \underline{\mathbb{Z}}=\sum^{\frac{t}{2} P} H \underline{\mathbb{Z}} . t \text { even. } \\
* . \quad t \text { odd }
\end{array}\right. \\
& \mathbb{I}_{2 t-s}^{C_{2}} \Sigma^{t \rho} H \underline{\mathbb{Z}}=\mathbb{I}_{2 t-s}^{C_{2}} \Sigma^{t+t \sigma} H \underline{\mathbb{Z}} \\
& =\underline{\Pi}_{t-S}^{C_{L}}\left(S^{+\sigma} \wedge H \underline{Z}\right)
\end{aligned}
$$

Note $\quad H_{c_{2}}^{t-s}\left(S^{-t \sigma} ; \underline{Z}\right) \cong H^{t-s}\left(S^{-t \sigma} / C_{2} ; \underline{\mathbb{Z}}\right)$

$$
\begin{aligned}
\left(\text { Recall } H_{a}^{*}(x: \underline{\underline{Z}})\right. & \left.\cong H^{*}(x / a: \underline{\underline{Z}})\right) \\
& =H^{t-s}\left(S^{v^{\prime}} / c_{2}: \underline{\underline{Z}}\right)
\end{aligned}
$$

Since $S^{v^{\bullet}}=S^{-t \sigma}=S^{-t \cdot-t}=$ suspension of sphere in $\mathbb{R}^{-t \cdot-t}$ i.e. $(-t-1)$-sphere $w /$ antipodal action

after passing to $H^{t-s}(-) \Rightarrow H^{t-s}\left(\Sigma S\left(V^{\prime}\right)\right) \cong H^{t-s}\left(S^{-t--t}\right)$

$$
\Rightarrow \quad \cdots \quad=\quad H^{t-s}\left(\Sigma \mathbb{R}^{-t-1} ; \mathbb{Z}\right)
$$

$$
=H^{t-s-1}\left(\mathbb{R} \mathbb{P}^{-t-1}: \mathbb{Z}\right)
$$

(also notice \mathbb{Z} is constant)

$$
=\left\{\begin{array}{lll}
\mathbb{Z}, & t-s=1 & \text { or } \quad 2 t=s . t \text { even } \\
\mathbb{4} / 2 . & t-s \text { odd. } & 1<t-s<-t, 2 t=s \\
0 . & \text { else } & t \text { odd }
\end{array}\right.
$$

Since ne know $\pi_{*} K U$ all $\pi_{*} K O$. the differentiae are fixed.
We have, at $H=e, \quad(0=\mathbb{Z})$

at $H=C_{2} . \quad(\cdots=\mathbb{Z}, \quad=\mathbb{Z} / 2)$

Package into Mackey functors together. get:

Here $\bar{\square}=\left(\prod_{0}^{\mathbb{Z}}, \quad \square={ }_{2}^{\mathbb{Z}}, \quad \cdot=\left.\right|_{\mathbb{Z}} ^{0} \quad c_{2} / e\right.$

$$
\Delta=\prod_{\mathbb{Z}}^{\mathbb{K}} \dot{\square}_{\mathbb{Z}}^{\mathbb{\Delta}}=\mathbb{Z}_{-}^{\mathbb{Z}}
$$

$$
c_{2} / c_{2}
$$

Thm (Algelnaic Cap thionem)

$$
\begin{aligned}
& G=C_{2^{n}} . \quad V \in R(G) \text {. then } \tilde{H}^{*}\left(S^{V}: \underline{\mathbb{Z}}\right)=\underline{0} \\
& \text { for } *=0.1 \text {. }
\end{aligned}
$$

